
Transaction management 

Tecnologie delle Basi di Dati M 



What’s a transaction? 

A transaction is a logical processing corresponding to  
a series of elementary physical operations (reads/writes)  
on the DB 

Examples: 
Transfer of a sum between bank accounts 

UPDATE CC UPDATE CC 

SET balance=balance-50 SET balance=balance+50 

WHERE account=123 WHERE account=235 

Updating wages of employees in a branch 

UPDATE Emp 

SET wage=1.1*wage 

WHERE  branch=‘S01’ 
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Properties 

The ACID acronym denotes the 4 properties that the DBMS 
should guarantee for every transaction: 

Atomicity: a transaction is a processing unit 

The DBMS guarantees that the transaction is performed as a whole 

Consistency: a transaction leaves the DB in a consistent state 

The DBMS guarantees that no integrity constraint is violated 

Isolation: a transaction is executed independently of the others 

If more than transaction is executed concurrently, the DBMS guarantees  
that the net effect is equivalent to one of the many possible sequential executions  
of the same transactions 

Durability: effects of a correctly terminated transaction should 
persist over time 

The DBMS protects the DB against failures 
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ACID properties and DBMS modules 

Transaction Manager 
Coordinates the execution of transactions, receiving relevant 
SQL commands 

Logging & Recovery Manager 
Is in charge of Atomicity and Durability 

Concurrency Manager 
Guarantees Isolation 

DDL Compiler 
Generates code for controlling Consistency  
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Transaction model 

In the model we consider a transaction is viewed as a sequence 
of elementary read (R) and write (W) operations on objects 
(tuples) of the DB that, starting from an initial DB state,  
brings the DB to a new consistent state 

 

 

 

 

 

 

 

In general, it is not required that intermediate DB states  
are consistent 
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Possible outcomes for a transaction (1) 

In the model we consider, a transaction (whose beginning is 
specified by the keyword BEGIN, although this is implicit in SQL) 
can only have two outcomes: 

Complete successfully: 
This happens only when the transaction, after having executed 
all its operations, specifies a particular SQL statement,  
called COMMIT (or COMMIT WORK), that “formally” 
communicates the successful completion to Transaction Manager 
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Possible outcomes for a transaction (2) 

Complete unsuccessfully (beforehand); 2 cases are possible: 

The transaction itself, for some reason, decides that it makes no sense to continue 
and thus “aborts” executing the SQL statement ROLLBACK  (or ROLLBACK WORK) 

The system (e.g., due to a failure or to a constraint violation)cannot guarantee the 
successful execution of the transaction,  which is thus aborted 

 

 

 

 

 

 

If, for some reason, the transaction is unable to complete successfully, the DBMS 
should “undo” any change possibly made to the DB 
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Transactions with savepoint 

The transaction model used by DBMS is actually more complex; 
in particular, it is possible to define some “savepoint”,  
which can be used to undo the operations of a transaction only 
partially 

 

 

 

 

 
To define a savepoint in DB2 we use the command 

SAVEPOINT <name> ON ROLLBACK RETAIN CURSORS 

 to execute a partial rollback 

ROLLBACK WORK TO SAVEPOINT <name> 
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Serial execution of transactions 

Since a DBMS should be able to execute different transaction 
accessing to shared data, it could execute such transactions in 
sequence (serial execution) 

E.g., two transactions T1 and T2 could be executed as follows, 
where the temporal succession of elementary operations  
on the DB (schedule) is highlighted: 
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T1 R(X) W(X) Commit 

T2 R(Y) W(Y) Commit 



Concurrent execution of transactions 

Alternatively, the DBMS could execute multiple transactions 
concurrently, interleaving operations of one transaction with 
those of other transactions (interleaved execution) 

Concurrent execution of multiple transactions is the key  
to guarantee performance : 

We can exploit the fact that, when a transaction is waiting for an 
I/O operation to complete, another transaction can use the CPU, 
thus increasing the system “throughput” (no. of transactions 
processed in the time unit) 

If we have one “short” and one “long” transactions, interleaved 
execution reduces the average response time of the system 
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T1 R(X) W(X) Commit 

T2 R(Y) W(Y) Commit 



Reducing the response time 

T1 is “long”, T2 is “short” (for simplicity, every table row 
represents a time unit 

Let us suppose that T2 begins at time=2 

 

 

 

 

Average response time = (1001 + (1004-1))/2 = 1002 

 

 

 

 

 

Average response time = (1004 + 3)/2 = 503.5 
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time 1 2 3 4 5 … 1002 1003 1004 

T1 R(X1) W(X1) R(X500) W(X500) Commit 

T2 R(Y) W(Y) Commit 

time 1 2 … 999 1000 1001 1002 1003 1004 

T1 R(X1) W(X1) R(X500) W(X500) Commit 

T2 R(Y) W(Y) Commit 



Isolation: managing concurrency 

The Transaction Manager should guarantee that concurrently 
executing transactions do not interfere with each other 

If this is not the case, 4 basic types of problems could arise: 
Lost Update: concurrent updates 

Dirty Read: reading uncommitted data 

Unrepeatable Read: interleaving reads and writes 

Phantom Row: new data not appearing in the result of a query 
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Examples of isolation problems 

Lost Update: two people, in different shops, buy the very last 
ticket for the U2 concert in Rome (!?) 

Dirty Read: the U2 tour schedule shows a date in Bologna  
on 15/07/17, but when you try to buy the ticket  
for that concert the system tells that no such date exists (!?) 

Unrepeatable Read: for the U2 concert (finally, the date has 
been decided!) you see a price of 90 €, you think about it  
a little, but when you’re decided, the price is risen to 110 € (!?) 

Phantom Row: you want to go see both U2 concerts in Italy,  
but when you try to buy tickets, you discover that there are 
now three dates (!?) 
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Lost update 

The following schedules show a typical lost update case,  
where we also highlight operations updating the value of X  
and show how the value of X in the DB varies over time 

 

 

 

 

 
 

The problem arises because T2 reads the value of X before T1 
(that already read it) updates it (“both transactions see the last 
ticket”) 
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T1 R(X) X=X-1 W(X) Commit 

X 1 1 1 1 0 0 0 0 

T2 R(X) X=X-1 W(X) Commit 

This update  

is lost 



Dirty read 

In this case, the problem arises because a transactions read a 
value that is not correct: 

 

 

 

 

 

 

 

What T2 does is based on an “intermediate”, non-stable value  
of X, (“the definitive date is not 15/07/17”) 

Consequences are unpredictable(it depends on what T2 does)  
and would be present even if T1 would not abort 
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T1 R(X) X=X+1 W(X) Rollback 

X 0 0 1 1 0 0 0 

T2 R(X) … Commit 

This read  

is “dirty” 



Unrepeatable read 

Now the problem is that a transaction reads a value twice,  
with different outcomes (“meanwhile, the price has 
increased”): 

 

 

 

 

 

 

 

Also in this case serious consequences could arise 

The same problem can occur for “analysis” transactions 

For example, T1 sums the balance of 2 accounts while T2 transfers money between 
the two (T1 could report an incorrect total value) 
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The two reads 

are inconsistent 

T1 R(X) X=X+1 W(X) Commit 

X 0 0 0 1 1 1 1 

T2 R(X) R(X) Commit 



Phantom row 

This case could arise only when tuples are deleted or inserted 
that should be logically considered by another transaction 

E.g.: record r4 is “phantom”, since T1 “dose not see it” 

 

 

 

 

T1: 
UPDATE Proj 

SET location=‘Firenze’ 

WHERE location=‘Bologna’ 

T2: 
INSERT INTO Proj 

VALUES(‘P03’,‘Bologna’) 
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T1 R(r2) R(r3) … W(r2) W(r3) Commit 

T2 R(X) Insert(r4) Commit 

T1  cannot see 

this record 



Properties of a schedule 

Serial: a schedule with transactions executed sequentially 

Serializable: a schedule involving only committed transactions 
whose effect on any consistent DB instance is guaranteed  
to be identical to that of some serial schedule 

Recoverable: a schedule where, if transaction T1 reads  
a change made by transaction T2, T1 commits only after  
T2 commits 

Cascadeless: a where every transaction can only read changes 
of committed transactions 

Strict: a schedule where every transaction does not read  
or write values changed by any other active transaction 
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Guaranteeing isolation 

A technique commonly used by DBMSs to avoid previous 
problems consists in locks 

Locks are a mechanism normally used by operating systems to 
regulate access to shared resources 

Before executing any operation, it is required to “acquire” a lock 
on the requested resource (e.g., a record) 

The lock request is implicit, thus invisible at SQL level 

… but we will see that we can do something with SQL, anyway 
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Lock types 

Locks come in different “flavors” (DB2 has 11 types!) 

The basic ones are: 
S (Shared): a shared lock is required for reading a value 

X (eXclusive): an exclusive lock is required to write/update  
a value 
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Lock compatibility 

The Lock Manager is a DBMS module in charge of keeping track 
which resources are currently used and which transactions are 
using them (and how) 

When a transaction T wants to operate on a value Y,  
a lock request on Y is sent to the Lock Manager 

Lock is granted to T according to the following compatibility 
table 

 

 

 

When T finishes using Y, can release the lock (unlock(Y)) 
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Another transaction 

has on Y a lock of type 

S X 

T requests  

a lock of type 

S OK NO 

X NO NO 



Strict 2-phase lock (Strict 2PL) protocol 

The way transaction release acquired locks is the key to solve 
concurrency problems 

It can be proven that isolation is guaranteed if: 
A transaction first acquires all necessary locks 

Locks are released only at the end of the execution  
(COMMIT or ABORT) 

 

 

 

 

As a collateral effect, deadlocks (stalemate situation)  
can happen, which are solved by aborting a transaction 
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no. of locks 

granted to T 

time 

COMMIT/ABORT 



Preventing lost update 

Previous schedule is modified as follows: 

 

 

 

Neither T1 nor T2 succeed in acquiring the lock needed to 
update X (they remain in “wait” state) 

We thus have a deadlock 
If the DBMS chooses to abort, say, T2, then T1 can proceed 
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T1 S-lock(X) R(X) X=X-1 X-lock(X) wait wait 

X 1 1 1 1 1 1 1 1 1 

T2 S-lock(X) R(X) X=X-1 X-lock(X) wait 



Preventing dirty read 

In this case, correct execution requires that T2 awaits T1 
termination before reading the value of X 
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T1 S-lock(X) R(X) X=X+1 X-lock(X) W(X) rollback unlock(X) 

X 0 0 0 0 1 1 0 0 0 

T2 S-lock(X) wait wait R(X) 



Preventing unrepeatable read 

Also in this case, T2 is put on hold, and T1 is therefore 
guaranteed to read always the correct value of X 
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T1 S-lock(X) R(X) X=X+1 X-lock(X) wait wait wait W(X) 

X 0 0 0 0 0 0 0 0 0 1 

T2 S-lock(X) R(X) R(X) commit unlock(X) 



Serializability graph 

Captures all potential conflicts between transactions  
in a schedule 

A node for each committed transaction 

An arc between transactions Ti and Tj if an action of Ti  
precedes and conflicts with an action of Tj (that is, both act  
on the same data object and at least one of them is a write) 
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Properties of Strict 2PL protocol 

Two schedules are said to be conflict equivalent if: 
They involve the same transactions 

They order every pair of conflicting actions  
of two committed transactions in the same way 

A schedule is said conflict serializable if it is conflict equivalent 
to some serial schedule 

Every conflict serializable schedule is serializable 
If data cannot be added or deleted (only modified) 

A schedule is conflict serializable if and only if  
its serializability graph is acyclic 

Strict 2PL protocol generates only acyclic graphs 
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2-phase lock (2PL) protocol 

With respect to Strict 2PL protocol, the second rule is now: 
A transaction cannot request additional locks once it releases 
any lock 

Thus, every transaction has two phases: 
Growing: locks are acquired 

Shrinking: locks are released 
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Properties of 2PL protocol 

Even 2PL protocol ensures acyclicity of the serializability graph, 
therefore allowing only serializable schedules 

Schedules generated by the 2PL protocol are not strict 

The Strict 2PL protocol only generates strict schedules 
Therefore, Strict 2PL also avoids cascading aborts 

Usually, DBMSs use Strict 2PL 
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Preventing phantom row 

Among the considered problems, is the most difficult to solve 

Existing solutions are quite different with respect to complexity 
and concurrency level allowable: 

A S-lock can be acquired on the whole table,  
then X-lock are requested only for tuples to be modified 

A new lock type is introduced, called “predicate lock”, 
concerning all tuples satisfying a given predicate  
(location = ‘Bologna’ in the example) 

If an index on location exists, a lock is requested  
on the leaf containing ‘Bologna’ 

In a DBMS, the situation is actually more complex 
both for the different lock types 

and for the “granularity” allowed for locks (at the level of 
attribute, tuple, page, table, …) 
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Lock management 

The Lock Manager maintains  
A table containing active transactions 

Also includes a list of locks held by any transaction 

A lock table describing, for each data “object”,  
the type of the lock 

Data “objects” can be pages, records, tree nodes, etc. 

Every lock table entry contains: 
The type of lock (S/X) 

The number of transactions currently holding the lock 

A queue of lock requests 
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Implementing the lock protocol (i) 

A transaction can request a lock on a data “object” specifying 
the type of lock 

If an S-lock is requested, the request queue is empty 
and the object is not currently X-locked, the lock is granted  
and the lock table is updated 

If an X-lock is requested  and no transaction currently holds a 
lock on the object (thus the request queue is also empty),  
the lock is granted and the lock table is updated 

Otherwise, the request cannot be granted,  
the lock request is queued and the transaction is suspended 

32 



Implementing the lock protocol (ii) 

At the end of each transaction (COMMIT or ABORT) 
All its locks are released 

For each lock entry, the lock request at the head of the queue  
is examined and, in case, the transaction is woken up  
and given the lock 

Only the head of the queue is examined, in order to avoid 
“starvation” of transactions 

Clearly, the implementation of lock/unlock commands  
must ensure they are atomic operations 

A synchronization mechanism should therefore be implemented 
to allow concurrent access to the lock table (e.g., semaphores) 
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Deadlock management 

Protocols for deadlock management are similar to those you 
might have seen in other courses 

Prevention techniques 

Detection techniques 

In both cases, it is required that a transaction is aborted 

Usually, detection techniques are preferred,  
since deadlocks are rather infrequent 
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Deadlock prevention 

Every transaction is assigned a priority 

Let us suppose that T1 requests a lock on O  
and T2 has on O a conflicting lock 

If T1 has priority > than T2 is allowed to wait, otherwise T1 
aborts (wait-die) 

If T1 has priority > than T2, T2 is aborted, otherwise T1 waits 
(wound-wait) 

In both cases, deadlocks cannot occur 

Typically, priority is given by the timestamp 
Whenever a transaction is aborted and re-created,  
it is given the original timestamp to avoid “starvation” 
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Comparison wait-die/wound-wait 

wait-die is non-preemptive: T can be aborted only because  
it requests a lock, not due to requests of other transactions 

With wait-die: 
An “old” transaction it tends to wait for younger transactions 
(and to “grow older”) 

A “young” transaction may be repeatedly aborted 

A transaction holding all the lock it needs will never be aborted 
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Conservative 2-phase lock 

A transaction requests all the lock it needs at the beginning 
Clearly, deadlocks cannot occur 

Transactions are never put to sleep 

The drawback is that locks are kept for a longer time,  
if there are only a few requests 

On the other hand, when multiple requests are present,  
transactions are never put on hold, thus locks are kept  
(on average) for a shorter time 
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Deadlock detection 

Deadlocks are rather infrequent and usually involve  
only a few transactions 

The control is performed periodically and uses  
the waits-for graph 

A node for each active transaction 

An arc from a waiting transaction to the transaction  
currently holding the lock 

A deadlock correspond to a cycle in the waits-for graph 
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Choosing the transaction to abort 

In order to solve a deadlock situation,  
we should select a transaction in a cycle and abort it 

Criteria: 
Least work done 

Most work yet to be done 

Least number of times a transaction was aborted 

Least number of locks held 

… 
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Concurrency control in SQL 

Although the DBMS is responsible for managing concurrent 
transactions (thus simplifying writing application code),  
SQL provides two basic mechanisms to specify transaction-level 
behavior 

As said, lock requests are implicit, since requesting and 
managing locks is both time- and space-consuming,  
if a transaction knows it has to process a large number of tuples 
in a relation, it can explicitly request a lock (SHARE or 
EXCLUSIVE MODE) on the whole table, e.g.: 
LOCK TABLE Students IN SHARE MODE; 

SELECT * 

FROM Students 

WHERE BirthDate<‘11/07/1982’; 
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Isolation levels 

The isolation level of an application controls the extent  
of protection for data used by that application,  
with respect to other application executing concurrently 

By choosing a possible isolation level, the user can obtain 
greater concurrency (and thus performance),  
at the cost of increasing the exposure to other applications’ 
uncommitted changes 
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Isolation levels in SQL 

SQL standard defines 4 isolation levels 
(we also report names used by DB2): 

 

 

 

 

 

 

In DB2, the default level is CS 

To change it (before connecting to the DB)  
the following SQL statement is used 
CHANGE ISOLATION TO [RR|RS|CS|UR]  
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Isolation Level DB2 terminology Phantom Unrepeatable 

Read 

Dirty  

Read 

Lost  

Update 

Serializable Repeatable Read (RR) NO NO NO NO 

Repeatable Read Read Stability (RS) YES NO NO NO 

Read Committed Cursor Stability (CS) YES YES NO NO 

Uncommitted Read Uncommitted Read (UR) YES YES YES NO 



Isolation levels in DB2 (i) 

Repeatable Read 
Locks all data used by the application 

If a SELECT is executed on a table, the whole table is locked, 
not just the result tuples 

Read Stability 
Locks all data retrieved by the application 

If a SELECT is executed on a table,  
only the result tuples are locked 
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Isolation levels in DB2 (ii) 

Cursor Stability 
Locks only the data currently used by the application 

If a SELECT is executed on a table,  
only the current tuple is locked 

Uncommitted Read 
The application can access uncommitted data  
from other applications 

Useful if read-only tables or SELECT statements are only used 
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Advanced issues 

A DBMS should be able to manage concurrency  
at different granularity levels 

Concurrency control should be exerted also on index structures 

In a system with relatively light contention for data objects,  
the overhead for obtaining locks and following a lock protocol 
could be too high 

Optimistic concurrency control (possible conflicts are checked at 
commit-time, possibly aborting transactions) 

Timestamp-based concurrency control (transactions are ordered 
by way of their timestamp) 
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Durability control 

Until now, we only considered isolation of transactions 

As said, the Logging & Recovery Manager is in charge  
of atomicity and durability 

In practice, we should guarantee that all actions  
of committed transactions survive system crashes  
or media failures 

46 



The ARIES algorithms (Mohan & Rothermel, ’89) 

ARIES (Algorithms for Recovery and Isolation Exploiting 
Semantics) is a family of algorithms for locking, logging, and 
recovery for the management of persistent data 

Originally developed for System R, the original DBMS by IBM 

Currently adopted by several systems, among which: 
DB2 

SQL server 

NT file system 
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Types of failures 

The different failures belong essentially to one of the following 
three classes: 

Transaction failure: is the case of an aborted transaction 

The effects of such transaction on the DB have to be un-done 

System failure: the system has an hardware or software failure, 
stopping all current transactions, but the secondary memory 
(disks) is not damaged 

Media/device failure: in this case the (persistent) content  
of the database is damaged 

Basic assumption: 
Writing a page to disk is an atomic action 
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Buffer management 

When a transaction T modifies a page P, the Buffer Manager 
has 2 possible options: 

No-steal policy: Keeping the page P within the buffer,  
waiting that T commits before writing it on disk 

Steal policy: Writing P when it is “more convenient”  
(to free the buffer or to optimize I/O operations),  
possibly before T terminates 

For efficiency reasons, DB2 uses the steal policy 
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Committing a Transaction 

When a transaction T commits, we have again two options: 
Force policy: before “formalizing” the conclusion  
of the transaction, all pages modified by T are immediately 
forced to disk 

No-force policy: the transaction is “formally” terminated;  
thus, some of its changes may still not have been written to disk 

Again, for efficiency reasons, DB2 uses the no-force policy 
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Atomicity and Durability 

To handle failures, a DBMS exploits different mechanisms,  
in particular: 

DataBase Dump: archive backup of (a part of) the DB 

Log file (“trail” or “journal”): sequential file  
where all update actions executed by transactions are recorded 
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The Log 

A record is written on the log as a result  
of the following actions : 

Update: update of the content of a page 

Commit: correct termination of a transaction 

Abort: incorrect termination of a transaction 

End: termination of a transaction (following commit/abort) 

Compensation: records the undoing of updates of a (failed) 
transaction 
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Update record 

The format of an update record for a transaction T  
modifying a DB page P is: 

(LSN, prevLSN, T, type, PID, before(P), after(P)) 

LSN: Log Sequence Number (record unique id) 

prevLSN: LSN of the previous Log record concerning T 

T: transaction unique id 

type: record type (update in this case) 

PID: modified page unique id 

before(P): “before image” of P, that is, the content of P  
before the change 

after(P): “after image” of P, that is, the content of P  
after the change 
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Compensation Record 

It is used when the change recorded in an update record  
is undone (e.g., because the transaction was aborted) 

The format of an update record for a transaction T is: 
(LSN, prevLSN, T, type, undoNextLSN, PID, before(P)) 

undoNextLSN represents the next record to be undone 

If we are undoing record U, this corresponds to the prevLSN of U 
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Example of Log 

LSN prevLSN T type PID before(P) after(P) 

… 

235 - T1 BEGIN 

236 - T2 BEGIN 

237 235 T1 UPDATE P15 (abc, 10) (abc, 20) 

238 236 T2 UPDATE P18 (def, 13) (ghf, 13) 

239 237 T1 COMMIT 

240 239 T1 END 

241 238 T2 UPDATE P19 (def, 15) (ghf, 15) 

242 - T3 BEGIN 

243 241 T2 UPDATE P19 (ghf, 15) (ghf, 17) 

244 242 T3 UPDATE P15 (abc, 20) (abc, 30) 

245 243 T2 ABORT 

246 244 T3 COMMIT 

247 243 T2 END 

… 



WAL Protocol 

In order to use the Log to restore the DB state after a failure,  
it is fundamental to apply the so-called WAL protocol  
(“Write-ahead Logging”): 

 

before writing a page P to disk, every update record describing  
a change to P should be written to the Log 

 

Intuitively, if the WAL protocol is not observed,  
it is possible that: 

A transaction T modifies the DB updating a page P 

A system failure occurs before the corresponding update record 
has been written to the Log 

In this case, it is evident that there would be no way to restore 
the DB to its initial state 
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Implementing the WAL protocol 

The Buffer Manager is responsible for ensuring compliance 
with the WAL protocol 

To this end, the Buffer Manager handles both the DB  
and the Log buffers 

In figure, we report the order in which the different operations 
related to the modification of a page are performed 
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P 

DB buffers Log buffers 

setDirty 

1 

Write P to disk 4 

Log 

Write Log record to disk 3 

2 

Generate Log record 

P record 

… 



Implementing the Log 

The Log must be written on stable storage 
Clearly, the Log should survive both system and media failures 

Stable storage is achieved by maintaining multiple copies 
(perhaps in different locations) of the Log in different permanent 
devices (disks/tapes) 

The Log allows the Recovery Manager 
to undo actions of aborted or incomplete transactions and 

to redo actions of committed transactions 

A transaction can be considered committed  
only when its log records have been written on stable storage! 
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Transaction failure 

With the steal policy, if a transaction T aborts it is possible that 
some of the pages it changed have been already written on disk 

To undo such changes (UNDO), we scan the Log backwards 
(using the prevLSN field) and restore on the DB the  
“before images” of pages modified by T 

59 

LSN prevLSN T type PID before(P) after(P) 

… 

236 - T2 BEGIN 

237 235 T1 UPDATE P15 (abc, 10) (abc, 20) 

238 236 T2 UPDATE P18 (def, 13) (ghf, 13) 

239 237 T1 COMMIT 

240 238 T2 UPDATE P19 (def, 15) (ghf, 15) 

241 - T3 BEGIN 

242 240 T2 UPDATE P19 (ghf, 15) (ghf, 17) 

243 241 T3 UPDATE P15 (abc, 20) (abc, 30) 

244 242 T2 ABORT 



System failure 

With a system failure, all transactions whose COMMIT  
cannot be found in the Log have to be undone 

If the no-force policy is adopted, it could be the case  
that some changes made by a committed transaction T  
have been not written to disk 

Therefore, T has to be re-done, rewriting the “after images” 
found in the Log 
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LSN prevLSN T type PID before(P) after(P) 

… 

235 - T1 BEGIN 

236 - T2 BEGIN 

237 235 T1 UPDATE P15 (abc, 10) (abc, 20) 

238 236 T2 UPDATE P18 (def, 13) (ghf, 13) 

239 237 T1 COMMIT 

… 



How to avoid useless page writes 

In order to avoid rewriting all “after images” of pages  
modified bi committed transactions, the Buffer Manager 
adopts the following technique: 

When a page P is updated by a transaction T, the corresponding 
log record is generated with a given LSN 

Such LSN is written in the page header of P 

 

 

 

 

 

When T is re-done and we find a log record concerning P  
with LSN = k, if LSN(P)  k there is no need to re-write P 

We read all pages updated by T, but we only write the ones 
that have not been already updated 61 

LSN prevLSN T type PID before(P) after(P) 

… 

237 … T1 UPDATE P15 (abc, 10) (abc, 20) 

238 … T2 UPDATE P15 (abc, 20) (ghf, 13) 

… 

327 … T3 P15 (ghf, 13) (ghf, 18) 

… 

Page 
Header 

PID LSN 

P15 293 

Page P15 on disk 



Checkpoint 

As we will see, the restart procedure has the goal of restoring 
the DB to a consistent state after a system failure 

In order to reduce the amount of work needed during restart,  
a “checkpoint” is performed periodically, by forcing updated 
pages to disk 

Checkpoint execution is recorded by writing on the Log a CKP 
(checkpoint) record including the transaction table  
and the dirty pages table 

In this way, if T has been committed before checkpoint,  
T needs not to be re-done 
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LSN prevLSN T type PID before(P) after(P) 

237 … T3 UPDATE P15 … … 

238 … T2 UPDATE P18 … … 

239 … T1 UPDATE P17 … … 

240 … T1 COMMIT 

241 … T2 COMMIT 

242 CKP 

243 … T3 UPDATE P19 … … 



Using ARIES 

ARIES allows the use of steal, no-force policies 

The DBMS restart after a crash is performed  
by the Recovery Manager in three steps: 

Analysis: it determines (a conservative superset of) dirty pages 
and transactions that were active at the time of the crash 

Redo: redoes all actions, starting from a particular point  
in the log 

Undo: undoes all actions of aborted transactions 
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Basic principles of ARIES 

WAL protocol 

Repeating history by way of REDO 

Logging updates during UNDO 
This avoids repeating UNDO multiple times in case of  
repeated failure/restart sequences 
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ARIES: system failure (i) 

First of all, the analysis phase is performed 

In the REDO phase, all updates to the pages which were dirty  
at the moment of the crash are re-done (forwards) 

In the UNDO phase, all updates of transactions which were 
active at the moment of the crash are un-done (backwards) 
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ARIES: system failure (ii) 

Analysis phase: 
Search the most recent checkpoint (backwards) 

Restore the corresponding transaction and dirty pages tables 

Analyze the log forwards: 

If a transaction terminates (ABORT/COMMIT record ) it is removed  
from the transaction table 

Every new transaction (BEGIN record ) is added to the transaction table 

Every page which is dirtied by an update or compensation record  
is added to the dirty pages table 

The transaction table only contains the transactions  
which were active at the moment of the crash 
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ARIES: system failure (iii) 

REDO phase: 
We start with the record having the least LSN, considering those 
included in the dirty pages table built during the analysis phase 

It is possible that such record precedes the last CKP 

We continue examining the log (forwards) re-doing all update 
and compensation records, unless: 

The corresponding page is not in the dirty pages table 

The LSN value in the page is  the record LSN 

The LSN value in the page is updated 
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ARIES: system failure (iv) 

UNDO phase: 
We identify all those transactions which were active  
at the time of the crash 

All actions of such transactions are un-done (backwards) 

We start with the transaction with the most recent (highest) LSN 

If the record is a compensation record, we proceed to the previous record 
(undoNextLSN field), unless this is 0; in such case, the transaction  
has been completely undone 

If the record is an update record, we perform the undo, write a 
compensation record, and proceed to the previous record (prevLSN field) 
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ARIES: crash during restart 

Writing compensation records allows handling repeated system 
crashes, in particular in the restart procedure (during UNDO) 

In fact, compensation records specify that such updates  
have been already undone during a previous UNDO phase 

If the crash happens during the analysis phase,  
this should be restarted from the beginning 

If the crash happens during the REDO phase, this should be 
restarted from the beginning 

Possibly, some pages are not rewritten during the new REDO 
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Media failure 

In case of a media failure we have to restore a copy of the DB 
(DataBase Dump) 

The DB dump is similar to a checkpoint 

At the restart, after restoring the dump, the “regular” recovery 
procedure is applied 

All committed transactions are redone 

All un-committed transactions are undone 
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Other algorithms for durability (i) 

If the Buffer Manager uses the no-steal policy,  
UNDO is not needed 

If the Buffer Manager uses the force policy,  
REDO is not needed 

Why ARIES is the most commonly used algorithms? 
Because it favors the normal operation of the DBMS,  
under the hypothesis that failures are infrequent 

In fact, other algorithms (greatly) complicate transaction 
management 
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Other algorithms for durability (ii) 

UNDO/no-REDO 
Updates of a transaction T are written in stable memory  
before T terminates 

no-UNDO/REDO 
Updates of a transaction T are written in stable memory  
after T terminates 

no-UNDO/no-REDO 
Updates of a transaction T are written in stable memory  
when T terminates (as an atomic action) 
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Example (i) 

Suppose the log contains the following records: 

 

 

 

 

 

 

Transaction T1 modifies page PD 

A crash occurs before the corresponding log record is written 
PB written; PA, PC, PD not 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 4 T2 UPDATE PA ValA’ ValA” 

6 3 T1 UPDATE PC ValC ValC’ 

7 5 T2 COMMIT 



Example (ii) 

Analysis phase: 
T1 added to transaction table 

PA added to dirty pages table (LSN=3) 

T2 added to transaction table 

PB added to dirty pages table (LSN=4) 

PC added to dirty pages table (LSN=6) 

T2 deleted from transaction table 

PD not added (WAL!) 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 4 T2 UPDATE PA ValA’ ValA” 

6 3 T1 UPDATE PC ValC ValC’ 

7 5 T2 COMMIT 



Example (iii) 

REDO phase: 
PA read from disk 

pageLSN=0<LSN=3: action is redone, pageLSN=3 

PB read from disk 

pageLSN=4≥LSN=4: action is not redone 

PA read from disk 

pageLSN=3<LSN=5: action is redone, pageLSN=5 

PC read from disk 

pageLSN=0<LSN=6: action is redone, pageLSN=6 

A END record is added for T2 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 4 T2 UPDATE PA ValA’ ValA” 

6 3 T1 UPDATE PC ValC ValC’ 

7 5 T2 COMMIT 



Example (iv) 

UNDO phase: 
T1 is the only active transaction 

PC is restored to ValC 

A compensation record is written with undoNextLSN=3 

PA is restored to ValA 

A compensation record is written with undoNextLSN=0 

A END record is added for T1 

Note that the value of PA updated by T2 has been overwritten 
(with Strict 2PL this would not happen) 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 4 T2 UPDATE PA ValA’ ValA” 

6 3 T1 UPDATE PC ValC ValC’ 

7 5 T2 COMMIT 



Example: crash during restart (i) 

Suppose the log contains the following records: 

 

 

 

 

 

 

 

A system crash occurs 
The ABORT of T1 is handled as a “regular” UNDO 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 3 T1 ABORT 

6 5 T1 COMP PA ValA undoNextLSN: - 

7 -  T3 BEGIN 

8 7 T3 UPDATE PC ValC ValC’ 

9 4 T2 UPDATE PA ValA ValA” 



Example: crash during restart (ii) 

Analysis phase: 
PA (LSN=3), PB (LSN=4), and PC (LSN=8)  
added to dirty pages table 

T2 and T3 added to transaction table (T1 added and deleted) 

REDO phase: 
LSN=3 is the first record to be redone 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 3 T1 ABORT 

6 5 T1 COMP PA ValA undoNextLSN: - 

7 -  T3 BEGIN 

8 7 T3 UPDATE PC ValC ValC’ 

9 4 T2 UPDATE PA ValA ValA” 



Example: crash during restart (iii) 

UNDO phase: 
 

Records to  
be undone are 

LSN=9 for T2 

LSN=8 for T3 

 

PA is restored  
to ValA 

A compensation  
record is written  
with undoNextLSN=4 

 

PC is restored to ValC 

A compensation record is written with undoNextLSN=0 

New crash! 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 3 T1 ABORT 

6 5 T1 COMP PA ValA undoNextLSN: - 

7 -  T3 BEGIN 

8 7 T3 UPDATE PC ValC ValC’ 

9 4 T2 UPDATE PA ValA ValA” 

CRASH, RESTART 

10 9 T2 COMP PA ValA undoNextLSN: 4 

11 8 T3 UPDATE PC ValC undoNextLSN: - 

12 11 T3 END 



Example: crash during restart (iv) 

Analysis phase: 
PA (LSN=3), PB (LSN=4), and PC (LSN=8)  
added to dirty pages table 

T2 added to transaction table (T1 and T3 added and deleted) 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 3 T1 ABORT 

6 5 T1 COMP PA ValA undoNextLSN: - 

7 -  T3 BEGIN 

8 7 T3 UPDATE PC ValC ValC’ 

9 4 T2 UPDATE PA ValA ValA” 

CRASH, RESTART 

10 9 T2 COMP PA ValA undoNextLSN: 4 

11 8 T3 UPDATE PC ValC undoNextLSN: - 

12 11 T3 END 



Example: crash during restart (v) 

REDO phase: 
LSN=3 is the first record to be redone, LSN=11 the last one 

If some of the pages have already been written on disk, they 
are not re-written (their LSN is up-to-date) 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 3 T1 ABORT 

6 5 T1 COMP PA ValA undoNextLSN: - 

7 -  T3 BEGIN 

8 7 T3 UPDATE PC ValC ValC’ 

9 4 T2 UPDATE PA ValA ValA” 

CRASH, RESTART 

10 9 T2 COMP PA ValA undoNextLSN: 4 

11 8 T3 UPDATE PC ValC undoNextLSN: - 

12 11 T3 END 



Example: crash during restart (vi) 

UNDO phase: 
The only record  
to be undone is  
LSN=4 for T2 

PB is restored  
to ValB 

A compensation  
record is written  
with no  
undoNextLSN 
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LSN prevLSN T type PID before(P) after(P) 

1 - T1 BEGIN 

2 - T2 BEGIN 

3 1 T1 UPDATE PA ValA ValA’ 

4 2 T2 UPDATE PB ValB ValB’ 

5 3 T1 ABORT 

6 5 T1 COMP PA ValA undoNextLSN: - 

7 -  T3 BEGIN 

8 7 T3 UPDATE PC ValC ValC’ 

9 4 T2 UPDATE PA ValA ValA” 

CRASH, RESTART 

10 9 T2 COMP PA ValA undoNextLSN: 4 

11 8 T3 UPDATE PC ValC undoNextLSN: - 

12 11 T3 END 

CRASH, RESTART 

13 10 T2 COMP PB ValB undoNextLSN: - 

14 13 T2 END 


