
Transaction management

Tecnologie delle Basi di Dati M

What’s a transaction?

A transaction is a logical processing corresponding to
a series of elementary physical operations (reads/writes)
on the DB

Examples:
Transfer of a sum between bank accounts

UPDATE CC UPDATE CC

SET balance=balance-50 SET balance=balance+50

WHERE account=123 WHERE account=235

Updating wages of employees in a branch

UPDATE Emp

SET wage=1.1*wage

WHERE branch=‘S01’

2

Properties

The ACID acronym denotes the 4 properties that the DBMS
should guarantee for every transaction:

Atomicity: a transaction is a processing unit

The DBMS guarantees that the transaction is performed as a whole

Consistency: a transaction leaves the DB in a consistent state

The DBMS guarantees that no integrity constraint is violated

Isolation: a transaction is executed independently of the others

If more than transaction is executed concurrently, the DBMS guarantees
that the net effect is equivalent to one of the many possible sequential executions
of the same transactions

Durability: effects of a correctly terminated transaction should
persist over time

The DBMS protects the DB against failures

3

ACID properties and DBMS modules

Transaction Manager
Coordinates the execution of transactions, receiving relevant
SQL commands

Logging & Recovery Manager
Is in charge of Atomicity and Durability

Concurrency Manager
Guarantees Isolation

DDL Compiler
Generates code for controlling Consistency

4

Transaction model

In the model we consider a transaction is viewed as a sequence
of elementary read (R) and write (W) operations on objects
(tuples) of the DB that, starting from an initial DB state,
brings the DB to a new consistent state

In general, it is not required that intermediate DB states
are consistent

5

Start

state
Intermediate

state

End

state

Intermediate

state

Intermediate

state

Intermediate

state

W(X) W(Y)

R(Z)

W(Z) W(Y)

Possible outcomes for a transaction (1)

In the model we consider, a transaction (whose beginning is
specified by the keyword BEGIN, although this is implicit in SQL)
can only have two outcomes:

Complete successfully:
This happens only when the transaction, after having executed
all its operations, specifies a particular SQL statement,
called COMMIT (or COMMIT WORK), that “formally”
communicates the successful completion to Transaction Manager

6

Start

state
End

state W(X) W(Y) R(Y)
BEGIN

Int. state

COMMIT

Int. state Int. state Int. state

Possible outcomes for a transaction (2)

Complete unsuccessfully (beforehand); 2 cases are possible:

The transaction itself, for some reason, decides that it makes no sense to continue
and thus “aborts” executing the SQL statement ROLLBACK (or ROLLBACK WORK)

The system (e.g., due to a failure or to a constraint violation)cannot guarantee the
successful execution of the transaction, which is thus aborted

If, for some reason, the transaction is unable to complete successfully, the DBMS
should “undo” any change possibly made to the DB

7

Start

state

W(X) R(Y) BEGIN
Int. state

ROLLBACK

Int. state Int. state

Transactions with savepoint

The transaction model used by DBMS is actually more complex;
in particular, it is possible to define some “savepoint”,
which can be used to undo the operations of a transaction only
partially

To define a savepoint in DB2 we use the command

SAVEPOINT <name> ON ROLLBACK RETAIN CURSORS

 to execute a partial rollback

ROLLBACK WORK TO SAVEPOINT <name>

8

Start

state

W(X)

W(Y)

BEGIN
Int. state Int. state

Int. state
ROLLBACK TO SAVEPOINT

Savepoint
SAVEPOINT

Serial execution of transactions

Since a DBMS should be able to execute different transaction
accessing to shared data, it could execute such transactions in
sequence (serial execution)

E.g., two transactions T1 and T2 could be executed as follows,
where the temporal succession of elementary operations
on the DB (schedule) is highlighted:

9

T1 R(X) W(X) Commit

T2 R(Y) W(Y) Commit

Concurrent execution of transactions

Alternatively, the DBMS could execute multiple transactions
concurrently, interleaving operations of one transaction with
those of other transactions (interleaved execution)

Concurrent execution of multiple transactions is the key
to guarantee performance :

We can exploit the fact that, when a transaction is waiting for an
I/O operation to complete, another transaction can use the CPU,
thus increasing the system “throughput” (no. of transactions
processed in the time unit)

If we have one “short” and one “long” transactions, interleaved
execution reduces the average response time of the system

10

T1 R(X) W(X) Commit

T2 R(Y) W(Y) Commit

Reducing the response time

T1 is “long”, T2 is “short” (for simplicity, every table row
represents a time unit

Let us suppose that T2 begins at time=2

Average response time = (1001 + (1004-1))/2 = 1002

Average response time = (1004 + 3)/2 = 503.5

11

time 1 2 3 4 5 … 1002 1003 1004

T1 R(X1) W(X1) R(X500) W(X500) Commit

T2 R(Y) W(Y) Commit

time 1 2 … 999 1000 1001 1002 1003 1004

T1 R(X1) W(X1) R(X500) W(X500) Commit

T2 R(Y) W(Y) Commit

Isolation: managing concurrency

The Transaction Manager should guarantee that concurrently
executing transactions do not interfere with each other

If this is not the case, 4 basic types of problems could arise:
Lost Update: concurrent updates

Dirty Read: reading uncommitted data

Unrepeatable Read: interleaving reads and writes

Phantom Row: new data not appearing in the result of a query

12

Examples of isolation problems

Lost Update: two people, in different shops, buy the very last
ticket for the U2 concert in Rome (!?)

Dirty Read: the U2 tour schedule shows a date in Bologna
on 15/07/17, but when you try to buy the ticket
for that concert the system tells that no such date exists (!?)

Unrepeatable Read: for the U2 concert (finally, the date has
been decided!) you see a price of 90 €, you think about it
a little, but when you’re decided, the price is risen to 110 € (!?)

Phantom Row: you want to go see both U2 concerts in Italy,
but when you try to buy tickets, you discover that there are
now three dates (!?)

13

Lost update

The following schedules show a typical lost update case,
where we also highlight operations updating the value of X
and show how the value of X in the DB varies over time

The problem arises because T2 reads the value of X before T1
(that already read it) updates it (“both transactions see the last
ticket”)

14

T1 R(X) X=X-1 W(X) Commit

X 1 1 1 1 0 0 0 0

T2 R(X) X=X-1 W(X) Commit

This update

is lost

Dirty read

In this case, the problem arises because a transactions read a
value that is not correct:

What T2 does is based on an “intermediate”, non-stable value
of X, (“the definitive date is not 15/07/17”)

Consequences are unpredictable(it depends on what T2 does)
and would be present even if T1 would not abort

15

T1 R(X) X=X+1 W(X) Rollback

X 0 0 1 1 0 0 0

T2 R(X) … Commit

This read

is “dirty”

Unrepeatable read

Now the problem is that a transaction reads a value twice,
with different outcomes (“meanwhile, the price has
increased”):

Also in this case serious consequences could arise

The same problem can occur for “analysis” transactions

For example, T1 sums the balance of 2 accounts while T2 transfers money between
the two (T1 could report an incorrect total value)

16

The two reads

are inconsistent

T1 R(X) X=X+1 W(X) Commit

X 0 0 0 1 1 1 1

T2 R(X) R(X) Commit

Phantom row

This case could arise only when tuples are deleted or inserted
that should be logically considered by another transaction

E.g.: record r4 is “phantom”, since T1 “dose not see it”

T1:
UPDATE Proj

SET location=‘Firenze’

WHERE location=‘Bologna’

T2:
INSERT INTO Proj

VALUES(‘P03’,‘Bologna’)

17

T1 R(r2) R(r3) … W(r2) W(r3) Commit

T2 R(X) Insert(r4) Commit

T1 cannot see

this record

Properties of a schedule

Serial: a schedule with transactions executed sequentially

Serializable: a schedule involving only committed transactions
whose effect on any consistent DB instance is guaranteed
to be identical to that of some serial schedule

Recoverable: a schedule where, if transaction T1 reads
a change made by transaction T2, T1 commits only after
T2 commits

Cascadeless: a where every transaction can only read changes
of committed transactions

Strict: a schedule where every transaction does not read
or write values changed by any other active transaction

18

Guaranteeing isolation

A technique commonly used by DBMSs to avoid previous
problems consists in locks

Locks are a mechanism normally used by operating systems to
regulate access to shared resources

Before executing any operation, it is required to “acquire” a lock
on the requested resource (e.g., a record)

The lock request is implicit, thus invisible at SQL level

… but we will see that we can do something with SQL, anyway

19

Lock types

Locks come in different “flavors” (DB2 has 11 types!)

The basic ones are:
S (Shared): a shared lock is required for reading a value

X (eXclusive): an exclusive lock is required to write/update
a value

20

Lock compatibility

The Lock Manager is a DBMS module in charge of keeping track
which resources are currently used and which transactions are
using them (and how)

When a transaction T wants to operate on a value Y,
a lock request on Y is sent to the Lock Manager

Lock is granted to T according to the following compatibility
table

When T finishes using Y, can release the lock (unlock(Y))

21

Another transaction

has on Y a lock of type

S X

T requests

a lock of type

S OK NO

X NO NO

Strict 2-phase lock (Strict 2PL) protocol

The way transaction release acquired locks is the key to solve
concurrency problems

It can be proven that isolation is guaranteed if:
A transaction first acquires all necessary locks

Locks are released only at the end of the execution
(COMMIT or ABORT)

As a collateral effect, deadlocks (stalemate situation)
can happen, which are solved by aborting a transaction

22

no. of locks

granted to T

time

COMMIT/ABORT

Preventing lost update

Previous schedule is modified as follows:

Neither T1 nor T2 succeed in acquiring the lock needed to
update X (they remain in “wait” state)

We thus have a deadlock
If the DBMS chooses to abort, say, T2, then T1 can proceed

23

T1 S-lock(X) R(X) X=X-1 X-lock(X) wait wait

X 1 1 1 1 1 1 1 1 1

T2 S-lock(X) R(X) X=X-1 X-lock(X) wait

Preventing dirty read

In this case, correct execution requires that T2 awaits T1
termination before reading the value of X

24

T1 S-lock(X) R(X) X=X+1 X-lock(X) W(X) rollback unlock(X)

X 0 0 0 0 1 1 0 0 0

T2 S-lock(X) wait wait R(X)

Preventing unrepeatable read

Also in this case, T2 is put on hold, and T1 is therefore
guaranteed to read always the correct value of X

25

T1 S-lock(X) R(X) X=X+1 X-lock(X) wait wait wait W(X)

X 0 0 0 0 0 0 0 0 0 1

T2 S-lock(X) R(X) R(X) commit unlock(X)

Serializability graph

Captures all potential conflicts between transactions
in a schedule

A node for each committed transaction

An arc between transactions Ti and Tj if an action of Ti
precedes and conflicts with an action of Tj (that is, both act
on the same data object and at least one of them is a write)

26

T1 T2

T1 T2

T1 T2

T3

Properties of Strict 2PL protocol

Two schedules are said to be conflict equivalent if:
They involve the same transactions

They order every pair of conflicting actions
of two committed transactions in the same way

A schedule is said conflict serializable if it is conflict equivalent
to some serial schedule

Every conflict serializable schedule is serializable
If data cannot be added or deleted (only modified)

A schedule is conflict serializable if and only if
its serializability graph is acyclic

Strict 2PL protocol generates only acyclic graphs

27

2-phase lock (2PL) protocol

With respect to Strict 2PL protocol, the second rule is now:
A transaction cannot request additional locks once it releases
any lock

Thus, every transaction has two phases:
Growing: locks are acquired

Shrinking: locks are released

28

no. of locks

granted to T

time

Properties of 2PL protocol

Even 2PL protocol ensures acyclicity of the serializability graph,
therefore allowing only serializable schedules

Schedules generated by the 2PL protocol are not strict

The Strict 2PL protocol only generates strict schedules
Therefore, Strict 2PL also avoids cascading aborts

Usually, DBMSs use Strict 2PL

29

Preventing phantom row

Among the considered problems, is the most difficult to solve

Existing solutions are quite different with respect to complexity
and concurrency level allowable:

A S-lock can be acquired on the whole table,
then X-lock are requested only for tuples to be modified

A new lock type is introduced, called “predicate lock”,
concerning all tuples satisfying a given predicate
(location = ‘Bologna’ in the example)

If an index on location exists, a lock is requested
on the leaf containing ‘Bologna’

In a DBMS, the situation is actually more complex
both for the different lock types

and for the “granularity” allowed for locks (at the level of
attribute, tuple, page, table, …)

30

Lock management

The Lock Manager maintains
A table containing active transactions

Also includes a list of locks held by any transaction

A lock table describing, for each data “object”,
the type of the lock

Data “objects” can be pages, records, tree nodes, etc.

Every lock table entry contains:
The type of lock (S/X)

The number of transactions currently holding the lock

A queue of lock requests

31

Implementing the lock protocol (i)

A transaction can request a lock on a data “object” specifying
the type of lock

If an S-lock is requested, the request queue is empty
and the object is not currently X-locked, the lock is granted
and the lock table is updated

If an X-lock is requested and no transaction currently holds a
lock on the object (thus the request queue is also empty),
the lock is granted and the lock table is updated

Otherwise, the request cannot be granted,
the lock request is queued and the transaction is suspended

32

Implementing the lock protocol (ii)

At the end of each transaction (COMMIT or ABORT)
All its locks are released

For each lock entry, the lock request at the head of the queue
is examined and, in case, the transaction is woken up
and given the lock

Only the head of the queue is examined, in order to avoid
“starvation” of transactions

Clearly, the implementation of lock/unlock commands
must ensure they are atomic operations

A synchronization mechanism should therefore be implemented
to allow concurrent access to the lock table (e.g., semaphores)

33

Deadlock management

Protocols for deadlock management are similar to those you
might have seen in other courses

Prevention techniques

Detection techniques

In both cases, it is required that a transaction is aborted

Usually, detection techniques are preferred,
since deadlocks are rather infrequent

34

Deadlock prevention

Every transaction is assigned a priority

Let us suppose that T1 requests a lock on O
and T2 has on O a conflicting lock

If T1 has priority > than T2 is allowed to wait, otherwise T1
aborts (wait-die)

If T1 has priority > than T2, T2 is aborted, otherwise T1 waits
(wound-wait)

In both cases, deadlocks cannot occur

Typically, priority is given by the timestamp
Whenever a transaction is aborted and re-created,
it is given the original timestamp to avoid “starvation”

35

Comparison wait-die/wound-wait

wait-die is non-preemptive: T can be aborted only because
it requests a lock, not due to requests of other transactions

With wait-die:
An “old” transaction it tends to wait for younger transactions
(and to “grow older”)

A “young” transaction may be repeatedly aborted

A transaction holding all the lock it needs will never be aborted

36

Conservative 2-phase lock

A transaction requests all the lock it needs at the beginning
Clearly, deadlocks cannot occur

Transactions are never put to sleep

The drawback is that locks are kept for a longer time,
if there are only a few requests

On the other hand, when multiple requests are present,
transactions are never put on hold, thus locks are kept
(on average) for a shorter time

37

Deadlock detection

Deadlocks are rather infrequent and usually involve
only a few transactions

The control is performed periodically and uses
the waits-for graph

A node for each active transaction

An arc from a waiting transaction to the transaction
currently holding the lock

A deadlock correspond to a cycle in the waits-for graph

38

Choosing the transaction to abort

In order to solve a deadlock situation,
we should select a transaction in a cycle and abort it

Criteria:
Least work done

Most work yet to be done

Least number of times a transaction was aborted

Least number of locks held

…

39

Concurrency control in SQL

Although the DBMS is responsible for managing concurrent
transactions (thus simplifying writing application code),
SQL provides two basic mechanisms to specify transaction-level
behavior

As said, lock requests are implicit, since requesting and
managing locks is both time- and space-consuming,
if a transaction knows it has to process a large number of tuples
in a relation, it can explicitly request a lock (SHARE or
EXCLUSIVE MODE) on the whole table, e.g.:
LOCK TABLE Students IN SHARE MODE;

SELECT *

FROM Students

WHERE BirthDate<‘11/07/1982’;

40

Isolation levels

The isolation level of an application controls the extent
of protection for data used by that application,
with respect to other application executing concurrently

By choosing a possible isolation level, the user can obtain
greater concurrency (and thus performance),
at the cost of increasing the exposure to other applications’
uncommitted changes

41

Isolation levels in SQL

SQL standard defines 4 isolation levels
(we also report names used by DB2):

In DB2, the default level is CS

To change it (before connecting to the DB)
the following SQL statement is used
CHANGE ISOLATION TO [RR|RS|CS|UR]

42

Isolation Level DB2 terminology Phantom Unrepeatable

Read

Dirty

Read

Lost

Update

Serializable Repeatable Read (RR) NO NO NO NO

Repeatable Read Read Stability (RS) YES NO NO NO

Read Committed Cursor Stability (CS) YES YES NO NO

Uncommitted Read Uncommitted Read (UR) YES YES YES NO

Isolation levels in DB2 (i)

Repeatable Read
Locks all data used by the application

If a SELECT is executed on a table, the whole table is locked,
not just the result tuples

Read Stability
Locks all data retrieved by the application

If a SELECT is executed on a table,
only the result tuples are locked

43

Isolation levels in DB2 (ii)

Cursor Stability
Locks only the data currently used by the application

If a SELECT is executed on a table,
only the current tuple is locked

Uncommitted Read
The application can access uncommitted data
from other applications

Useful if read-only tables or SELECT statements are only used

44

Advanced issues

A DBMS should be able to manage concurrency
at different granularity levels

Concurrency control should be exerted also on index structures

In a system with relatively light contention for data objects,
the overhead for obtaining locks and following a lock protocol
could be too high

Optimistic concurrency control (possible conflicts are checked at
commit-time, possibly aborting transactions)

Timestamp-based concurrency control (transactions are ordered
by way of their timestamp)

45

Durability control

Until now, we only considered isolation of transactions

As said, the Logging & Recovery Manager is in charge
of atomicity and durability

In practice, we should guarantee that all actions
of committed transactions survive system crashes
or media failures

46

The ARIES algorithms (Mohan & Rothermel, ’89)

ARIES (Algorithms for Recovery and Isolation Exploiting
Semantics) is a family of algorithms for locking, logging, and
recovery for the management of persistent data

Originally developed for System R, the original DBMS by IBM

Currently adopted by several systems, among which:
DB2

SQL server

NT file system

47

Types of failures

The different failures belong essentially to one of the following
three classes:

Transaction failure: is the case of an aborted transaction

The effects of such transaction on the DB have to be un-done

System failure: the system has an hardware or software failure,
stopping all current transactions, but the secondary memory
(disks) is not damaged

Media/device failure: in this case the (persistent) content
of the database is damaged

Basic assumption:
Writing a page to disk is an atomic action

48

Buffer management

When a transaction T modifies a page P, the Buffer Manager
has 2 possible options:

No-steal policy: Keeping the page P within the buffer,
waiting that T commits before writing it on disk

Steal policy: Writing P when it is “more convenient”
(to free the buffer or to optimize I/O operations),
possibly before T terminates

For efficiency reasons, DB2 uses the steal policy

49

Committing a Transaction

When a transaction T commits, we have again two options:
Force policy: before “formalizing” the conclusion
of the transaction, all pages modified by T are immediately
forced to disk

No-force policy: the transaction is “formally” terminated;
thus, some of its changes may still not have been written to disk

Again, for efficiency reasons, DB2 uses the no-force policy

50

Atomicity and Durability

To handle failures, a DBMS exploits different mechanisms,
in particular:

DataBase Dump: archive backup of (a part of) the DB

Log file (“trail” or “journal”): sequential file
where all update actions executed by transactions are recorded

51

The Log

A record is written on the log as a result
of the following actions :

Update: update of the content of a page

Commit: correct termination of a transaction

Abort: incorrect termination of a transaction

End: termination of a transaction (following commit/abort)

Compensation: records the undoing of updates of a (failed)
transaction

52

Update record

The format of an update record for a transaction T
modifying a DB page P is:

(LSN, prevLSN, T, type, PID, before(P), after(P))

LSN: Log Sequence Number (record unique id)

prevLSN: LSN of the previous Log record concerning T

T: transaction unique id

type: record type (update in this case)

PID: modified page unique id

before(P): “before image” of P, that is, the content of P
before the change

after(P): “after image” of P, that is, the content of P
after the change

53

Compensation Record

It is used when the change recorded in an update record
is undone (e.g., because the transaction was aborted)

The format of an update record for a transaction T is:
(LSN, prevLSN, T, type, undoNextLSN, PID, before(P))

undoNextLSN represents the next record to be undone

If we are undoing record U, this corresponds to the prevLSN of U

54

Example of Log

LSN prevLSN T type PID before(P) after(P)

…

235 - T1 BEGIN

236 - T2 BEGIN

237 235 T1 UPDATE P15 (abc, 10) (abc, 20)

238 236 T2 UPDATE P18 (def, 13) (ghf, 13)

239 237 T1 COMMIT

240 239 T1 END

241 238 T2 UPDATE P19 (def, 15) (ghf, 15)

242 - T3 BEGIN

243 241 T2 UPDATE P19 (ghf, 15) (ghf, 17)

244 242 T3 UPDATE P15 (abc, 20) (abc, 30)

245 243 T2 ABORT

246 244 T3 COMMIT

247 243 T2 END

…

WAL Protocol

In order to use the Log to restore the DB state after a failure,
it is fundamental to apply the so-called WAL protocol
(“Write-ahead Logging”):

before writing a page P to disk, every update record describing
a change to P should be written to the Log

Intuitively, if the WAL protocol is not observed,
it is possible that:

A transaction T modifies the DB updating a page P

A system failure occurs before the corresponding update record
has been written to the Log

In this case, it is evident that there would be no way to restore
the DB to its initial state

56

Implementing the WAL protocol

The Buffer Manager is responsible for ensuring compliance
with the WAL protocol

To this end, the Buffer Manager handles both the DB
and the Log buffers

In figure, we report the order in which the different operations
related to the modification of a page are performed

57 DB

P

DB buffers Log buffers

setDirty

1

Write P to disk 4

Log

Write Log record to disk 3

2

Generate Log record

P record

…

Implementing the Log

The Log must be written on stable storage
Clearly, the Log should survive both system and media failures

Stable storage is achieved by maintaining multiple copies
(perhaps in different locations) of the Log in different permanent
devices (disks/tapes)

The Log allows the Recovery Manager
to undo actions of aborted or incomplete transactions and

to redo actions of committed transactions

A transaction can be considered committed
only when its log records have been written on stable storage!

58

Transaction failure

With the steal policy, if a transaction T aborts it is possible that
some of the pages it changed have been already written on disk

To undo such changes (UNDO), we scan the Log backwards
(using the prevLSN field) and restore on the DB the
“before images” of pages modified by T

59

LSN prevLSN T type PID before(P) after(P)

…

236 - T2 BEGIN

237 235 T1 UPDATE P15 (abc, 10) (abc, 20)

238 236 T2 UPDATE P18 (def, 13) (ghf, 13)

239 237 T1 COMMIT

240 238 T2 UPDATE P19 (def, 15) (ghf, 15)

241 - T3 BEGIN

242 240 T2 UPDATE P19 (ghf, 15) (ghf, 17)

243 241 T3 UPDATE P15 (abc, 20) (abc, 30)

244 242 T2 ABORT

System failure

With a system failure, all transactions whose COMMIT
cannot be found in the Log have to be undone

If the no-force policy is adopted, it could be the case
that some changes made by a committed transaction T
have been not written to disk

Therefore, T has to be re-done, rewriting the “after images”
found in the Log

60

LSN prevLSN T type PID before(P) after(P)

…

235 - T1 BEGIN

236 - T2 BEGIN

237 235 T1 UPDATE P15 (abc, 10) (abc, 20)

238 236 T2 UPDATE P18 (def, 13) (ghf, 13)

239 237 T1 COMMIT

…

How to avoid useless page writes

In order to avoid rewriting all “after images” of pages
modified bi committed transactions, the Buffer Manager
adopts the following technique:

When a page P is updated by a transaction T, the corresponding
log record is generated with a given LSN

Such LSN is written in the page header of P

When T is re-done and we find a log record concerning P
with LSN = k, if LSN(P) k there is no need to re-write P

We read all pages updated by T, but we only write the ones
that have not been already updated 61

LSN prevLSN T type PID before(P) after(P)

…

237 … T1 UPDATE P15 (abc, 10) (abc, 20)

238 … T2 UPDATE P15 (abc, 20) (ghf, 13)

…

327 … T3 P15 (ghf, 13) (ghf, 18)

…

Page
Header

PID LSN

P15 293

Page P15 on disk

Checkpoint

As we will see, the restart procedure has the goal of restoring
the DB to a consistent state after a system failure

In order to reduce the amount of work needed during restart,
a “checkpoint” is performed periodically, by forcing updated
pages to disk

Checkpoint execution is recorded by writing on the Log a CKP
(checkpoint) record including the transaction table
and the dirty pages table

In this way, if T has been committed before checkpoint,
T needs not to be re-done

62

LSN prevLSN T type PID before(P) after(P)

237 … T3 UPDATE P15 … …

238 … T2 UPDATE P18 … …

239 … T1 UPDATE P17 … …

240 … T1 COMMIT

241 … T2 COMMIT

242 CKP

243 … T3 UPDATE P19 … …

Using ARIES

ARIES allows the use of steal, no-force policies

The DBMS restart after a crash is performed
by the Recovery Manager in three steps:

Analysis: it determines (a conservative superset of) dirty pages
and transactions that were active at the time of the crash

Redo: redoes all actions, starting from a particular point
in the log

Undo: undoes all actions of aborted transactions

63

Basic principles of ARIES

WAL protocol

Repeating history by way of REDO

Logging updates during UNDO
This avoids repeating UNDO multiple times in case of
repeated failure/restart sequences

64

ARIES: system failure (i)

First of all, the analysis phase is performed

In the REDO phase, all updates to the pages which were dirty
at the moment of the crash are re-done (forwards)

In the UNDO phase, all updates of transactions which were
active at the moment of the crash are un-done (backwards)

65

ARIES: system failure (ii)

Analysis phase:
Search the most recent checkpoint (backwards)

Restore the corresponding transaction and dirty pages tables

Analyze the log forwards:

If a transaction terminates (ABORT/COMMIT record) it is removed
from the transaction table

Every new transaction (BEGIN record) is added to the transaction table

Every page which is dirtied by an update or compensation record
is added to the dirty pages table

The transaction table only contains the transactions
which were active at the moment of the crash

66

ARIES: system failure (iii)

REDO phase:
We start with the record having the least LSN, considering those
included in the dirty pages table built during the analysis phase

It is possible that such record precedes the last CKP

We continue examining the log (forwards) re-doing all update
and compensation records, unless:

The corresponding page is not in the dirty pages table

The LSN value in the page is the record LSN

The LSN value in the page is updated

67

ARIES: system failure (iv)

UNDO phase:
We identify all those transactions which were active
at the time of the crash

All actions of such transactions are un-done (backwards)

We start with the transaction with the most recent (highest) LSN

If the record is a compensation record, we proceed to the previous record
(undoNextLSN field), unless this is 0; in such case, the transaction
has been completely undone

If the record is an update record, we perform the undo, write a
compensation record, and proceed to the previous record (prevLSN field)

68

ARIES: crash during restart

Writing compensation records allows handling repeated system
crashes, in particular in the restart procedure (during UNDO)

In fact, compensation records specify that such updates
have been already undone during a previous UNDO phase

If the crash happens during the analysis phase,
this should be restarted from the beginning

If the crash happens during the REDO phase, this should be
restarted from the beginning

Possibly, some pages are not rewritten during the new REDO

69

Media failure

In case of a media failure we have to restore a copy of the DB
(DataBase Dump)

The DB dump is similar to a checkpoint

At the restart, after restoring the dump, the “regular” recovery
procedure is applied

All committed transactions are redone

All un-committed transactions are undone

70

Other algorithms for durability (i)

If the Buffer Manager uses the no-steal policy,
UNDO is not needed

If the Buffer Manager uses the force policy,
REDO is not needed

Why ARIES is the most commonly used algorithms?
Because it favors the normal operation of the DBMS,
under the hypothesis that failures are infrequent

In fact, other algorithms (greatly) complicate transaction
management

71

Other algorithms for durability (ii)

UNDO/no-REDO
Updates of a transaction T are written in stable memory
before T terminates

no-UNDO/REDO
Updates of a transaction T are written in stable memory
after T terminates

no-UNDO/no-REDO
Updates of a transaction T are written in stable memory
when T terminates (as an atomic action)

72

Example (i)

Suppose the log contains the following records:

Transaction T1 modifies page PD

A crash occurs before the corresponding log record is written
PB written; PA, PC, PD not

73

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 4 T2 UPDATE PA ValA’ ValA”

6 3 T1 UPDATE PC ValC ValC’

7 5 T2 COMMIT

Example (ii)

Analysis phase:
T1 added to transaction table

PA added to dirty pages table (LSN=3)

T2 added to transaction table

PB added to dirty pages table (LSN=4)

PC added to dirty pages table (LSN=6)

T2 deleted from transaction table

PD not added (WAL!)

74

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 4 T2 UPDATE PA ValA’ ValA”

6 3 T1 UPDATE PC ValC ValC’

7 5 T2 COMMIT

Example (iii)

REDO phase:
PA read from disk

pageLSN=0<LSN=3: action is redone, pageLSN=3

PB read from disk

pageLSN=4≥LSN=4: action is not redone

PA read from disk

pageLSN=3<LSN=5: action is redone, pageLSN=5

PC read from disk

pageLSN=0<LSN=6: action is redone, pageLSN=6

A END record is added for T2

75

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 4 T2 UPDATE PA ValA’ ValA”

6 3 T1 UPDATE PC ValC ValC’

7 5 T2 COMMIT

Example (iv)

UNDO phase:
T1 is the only active transaction

PC is restored to ValC

A compensation record is written with undoNextLSN=3

PA is restored to ValA

A compensation record is written with undoNextLSN=0

A END record is added for T1

Note that the value of PA updated by T2 has been overwritten
(with Strict 2PL this would not happen)

76

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 4 T2 UPDATE PA ValA’ ValA”

6 3 T1 UPDATE PC ValC ValC’

7 5 T2 COMMIT

Example: crash during restart (i)

Suppose the log contains the following records:

A system crash occurs
The ABORT of T1 is handled as a “regular” UNDO

77

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 3 T1 ABORT

6 5 T1 COMP PA ValA undoNextLSN: -

7 - T3 BEGIN

8 7 T3 UPDATE PC ValC ValC’

9 4 T2 UPDATE PA ValA ValA”

Example: crash during restart (ii)

Analysis phase:
PA (LSN=3), PB (LSN=4), and PC (LSN=8)
added to dirty pages table

T2 and T3 added to transaction table (T1 added and deleted)

REDO phase:
LSN=3 is the first record to be redone

78

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 3 T1 ABORT

6 5 T1 COMP PA ValA undoNextLSN: -

7 - T3 BEGIN

8 7 T3 UPDATE PC ValC ValC’

9 4 T2 UPDATE PA ValA ValA”

Example: crash during restart (iii)

UNDO phase:

Records to
be undone are

LSN=9 for T2

LSN=8 for T3

PA is restored
to ValA

A compensation
record is written
with undoNextLSN=4

PC is restored to ValC

A compensation record is written with undoNextLSN=0

New crash!

79

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 3 T1 ABORT

6 5 T1 COMP PA ValA undoNextLSN: -

7 - T3 BEGIN

8 7 T3 UPDATE PC ValC ValC’

9 4 T2 UPDATE PA ValA ValA”

CRASH, RESTART

10 9 T2 COMP PA ValA undoNextLSN: 4

11 8 T3 UPDATE PC ValC undoNextLSN: -

12 11 T3 END

Example: crash during restart (iv)

Analysis phase:
PA (LSN=3), PB (LSN=4), and PC (LSN=8)
added to dirty pages table

T2 added to transaction table (T1 and T3 added and deleted)

80

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 3 T1 ABORT

6 5 T1 COMP PA ValA undoNextLSN: -

7 - T3 BEGIN

8 7 T3 UPDATE PC ValC ValC’

9 4 T2 UPDATE PA ValA ValA”

CRASH, RESTART

10 9 T2 COMP PA ValA undoNextLSN: 4

11 8 T3 UPDATE PC ValC undoNextLSN: -

12 11 T3 END

Example: crash during restart (v)

REDO phase:
LSN=3 is the first record to be redone, LSN=11 the last one

If some of the pages have already been written on disk, they
are not re-written (their LSN is up-to-date)

81

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 3 T1 ABORT

6 5 T1 COMP PA ValA undoNextLSN: -

7 - T3 BEGIN

8 7 T3 UPDATE PC ValC ValC’

9 4 T2 UPDATE PA ValA ValA”

CRASH, RESTART

10 9 T2 COMP PA ValA undoNextLSN: 4

11 8 T3 UPDATE PC ValC undoNextLSN: -

12 11 T3 END

Example: crash during restart (vi)

UNDO phase:
The only record
to be undone is
LSN=4 for T2

PB is restored
to ValB

A compensation
record is written
with no
undoNextLSN

82

LSN prevLSN T type PID before(P) after(P)

1 - T1 BEGIN

2 - T2 BEGIN

3 1 T1 UPDATE PA ValA ValA’

4 2 T2 UPDATE PB ValB ValB’

5 3 T1 ABORT

6 5 T1 COMP PA ValA undoNextLSN: -

7 - T3 BEGIN

8 7 T3 UPDATE PC ValC ValC’

9 4 T2 UPDATE PA ValA ValA”

CRASH, RESTART

10 9 T2 COMP PA ValA undoNextLSN: 4

11 8 T3 UPDATE PC ValC undoNextLSN: -

12 11 T3 END

CRASH, RESTART

13 10 T2 COMP PB ValB undoNextLSN: -

14 13 T2 END

